ensun logo
Locations
Company type
Result types
Industries
Employees
Founding year
background

Top Artificial Intelligence Companies in India

The B2B platform for the best purchasing descision. Identify and compare relevant B2B manufacturers, suppliers and retailers

Close

Filter

Continents


Locations


Result types


Company type


Industries


Company status

Number of employees

to

Founding year

to

Clear filters

60 companies for Artificial Intelligence in India

AI-Techservices | AI Development Company's Logo

AI-Techservices | AI Development Company

Madurai, India

D

251-500 Employees

-

Key takeaway

AI Techservices specializes in developing customized artificial intelligence solutions, including machine learning and deep learning applications, to enhance business performance and customer engagement. Their expertise in areas such as predictive analytics, object detection, and cognitive customer care positions them as a key player in leveraging AI to drive revenue and streamline processes across various industries.

Highlighted product

Core business

AI Development Company | Artificial Intelligence Development - AI Techservices

AI Techservices is the top grade Artificial Intelligence software development company specialized in AI development of Machine Learning and Deep Learning Solutions for enterprises.

Vectority Solutions's Logo

Vectority Solutions

Hyderabad, India

D

1-10 Employees

2020

Key takeaway

The company specializes in enterprise AI, focusing on advanced technologies in the field of artificial intelligence. Their services include comprehensive data migration solutions, which facilitate a smoother transition for enterprises.

Highlighted product

Service

Artificial Intelligence – Vectority Solutions

AI Auth's Logo

AI Auth

Noida, India

D

251-500 Employees

-

Key takeaway

AI Auth is a technology integration and solutions provider that emphasizes automation solutions to aid organizations in their digital transformation journey. Their expertise in integration and automation is particularly relevant to advancements in artificial intelligence.

Highlighted product

Core business

Home - AI Auth

AI Auth is an experienced technology integration and solutions provider that helps organizations throughout APAC and North America effectively navigate towards digital transformation through automation solutions.AI Auth is subsidary of RST Solutions USA, with a sharp focus on Integration and Automation Solutions delivering the solutions that really add up value to the organizations.

Looking for more accurate results?

Find the right companies for free by entering your custom query!

25M+ companies

250M+ products

Free to use

AIW - Artificially Intelligent Workforce's Logo

AIW - Artificially Intelligent Workforce

Gurugram District, India

D

11-50 Employees

2021

Key takeaway

AIW has significantly enhanced operational efficiency by automating critical processes, saving nearly 7000 man hours annually and enabling in-house payroll processing. Their no-code platform allows experts to implement autonomous solutions that address real industry challenges, ultimately leading to substantial cost savings and increased capacity for information sharing.

Highlighted product

Product

AIW | Artificially intelligent workforce

Geeky Bee AI Private Limited - An Artificial Intelligence Company's Logo

Geeky Bee AI Private Limited - An Artificial Intelligence Company

Pimpri-Chinchwad, India

D

11-50 Employees

2018

Key takeaway

Geeky Bee AI Private Limited is dedicated to developing advanced autonomous AI technology that enhances human experiences through innovations in computer vision, machine learning, and natural language processing. Their expertise helps clients tackle complex challenges while fostering a security-rich infrastructure ready for AI and hybrid cloud solutions.

Highlighted product

Product

Artificial Intelligence

BAVISTA SOFTWARE INDIA PVT LTD's Logo

BAVISTA SOFTWARE INDIA PVT LTD

Chennai, India

D

11-50 Employees

2019

Key takeaway

BAVISTA SOFTWARE INDIA PVT LTD is dedicated to empowering business transformation through innovative solutions, emphasizing their expertise in digital transformation and the integration of advanced technologies. With over 20 years of experience and partnerships with major tech firms, they are well-positioned to deliver enterprise-class solutions that likely incorporate artificial intelligence.

Highlighted product

Product

AI

Super AI Polaris's Logo

Super AI Polaris

India

D

51-100 Employees

-

Key takeaway

The company offers technology-driven online courses and enterprise solutions focused on applied artificial intelligence, aiming to enhance careers in the technological industry.

Highlighted product

Core business

Super AIP

AIVOT AI's Logo

AIVOT AI

Mumbai, India

D

11-50 Employees

2019

Key takeaway

AIVOT is a forward-thinking artificial intelligence company that emphasizes the transformative potential of AI and Data Sciences in technology and automation. They offer a range of services, products, and training, making AI accessible to all businesses.

Highlighted product

Service

Service

We make AI accessible to all !

Cognitive Machines's Logo

Cognitive Machines

Bengaluru, India

D

1-10 Employees

2016

Key takeaway

The company specializes in artificial intelligence and related technologies, emphasizing its expertise in machine learning and data mining to empower organizations, particularly small and medium enterprises. Their commitment to innovation and efficiency positions them as a trusted partner for businesses looking to harness the power of AI and cloud computing.

Highlighted product

Core business

Cognitive Machines | Artificial Intelligence | Data Analytics | Custom Software

Industry.AI's Logo

Industry.AI

Gurugram District, India

D

51-100 Employees

2010

Key takeaway

The company, BLP, has developed over 80 proprietary AI solutions designed to enhance industrial productivity, particularly in the manufacturing sector. Their services encompass the installation of hardware and IoT sensors, data aggregation software, and AI analytics, all aimed at addressing key challenges in the industry.

Highlighted product

Core business

Company – BLP


Related searches for Artificial Intelligence

Technologies which have been searched by others and may be interesting for you:

Products and services for Artificial Intelligence

A selection of suitable products and services provided by verified companies according to your search.

Product: KI Telefon Bot

Service

KI Telefon Bot

Go to product

Product: KI E-Mail Bot

Service

KI E-Mail Bot

Go to product

Product: KI Mitarbeiter-Assistent

Service

KI Mitarbeiter-Assistent

Go to product

Product: KI Rechnungsbot

Service

KI Rechnungsbot

Go to product


Use cases around Artificial Intelligence

A selection of suitable use cases for products or services provided by verified companies according to your search.

UseCase: Get Started With CurateIt

Use case

Get Started With CurateIt

Software industries, Marketing agencies, Internet marketing

Spoken like ‘Curate it’ is derived from the word curation meaning to filter or organize things. Another aspect of it also from root of the word curious. We believe all of us are multi-faceted beings with different interests & passions and Curateit is a platform for those crazy ones. It's a place where users can share all aspects, whether you’re a creative, artist, influencer or entrepreneur, a student or a teacher, a hobbyist or a professional.

UseCase: Serviceportal

Use case

Serviceportal

Einzelhandel, Verwaltung, Onlinehandel

Wie Merck das zentrale Serviceportal mit MR.KNOW – BPM und digitalen Assistenten automatisiert Projektumfang Um für seine internen Partner ein Service-Portal zur Verfügung zu stellen, war Merck auf der Suche nach einer agilen No-Code-Plattform, welche auch komplexe Anwendungen umsetzen kann. Darin sollten über tausend Services an einer zentralen Stelle angeboten werden. Bisher konnte das umfangreiche Service-Angebot den Business Sektoren nicht an einer Stelle systemisch zur Verfügung gestellt werden und wurde durch verschiedene IT-Systeme unterstützt. Dank des ganzheitlichen Prozessmanagements von MR.KNOW wurde dieses Problem gelöst und ein Serviceportal gebaut, um alle Anforderungen zu vereinen: die/das „SiteService4You“-Plattform/Portal. Funktionalitäten In Zusammenarbeit mit Merck hat das Team von MR.KNOW das agile Serviceportal entwickelt, welches das gesamte Serviceportfolio strukturiert und übersichtlich auf einer Plattform darstellt. Gleichzeitig wurde ein Service-Katalog als Datenbank umgesetzt, in der die Services verwaltet werden. Das Serviceportal bietet einen zentralen Zugang zum Service-Katalog, der eine Vielzahl von Funktionen und Prozessen umfasst. Die Arbeitsabläufe im Portal basieren auf der MR.KNOW - BPM Engine. Diese kann von geschulten Mitarbeitern von Merck ohne Coding einfach erstellt werden. Die Nutzer, sowohl intern als auch extern, haben über die Integration von Benutzerverzeichnissen und einer Benutzerverwaltung Zugriff auf die für sie freigeschalteten Anwendungen. Die Services, welche im Serviceportal dargestellt werden, können vom Kunden bestellt werden. Die Abwicklung der implementierten Bestellprozesse erfolgt innerhalb des Systems mithilfe von Workflows. welche optimal in die Arbeitsumgebung der verschiedenen Abteilungen integriert werden. Die Implementierung neuer Workflows oder die Anpassung bestehender Workflows kann einfach durchgeführt werden. Das Design und Layout des Portals erfüllen das Corporate Design von Merck und sind hochflexibel, individuell und einfach anpassbar. Das System ist zukunftsgerichtet und sehr agil, um die diversen Services und deren Workflows abbilden zu können.

UseCase: Forecasting methodology in the insulation material industry through AI integration

Use case

Forecasting methodology in the insulation material industry through AI integration

Dämmaterial, Dämmaterial Industrie, Insulation Material, insulation material industry, supplier, construction, construction industry

In the complex industrial landscape of insulation materials, in which multiple market segments and diverse product lines coexist, precise forecasting and strategic planning based on this is essential. For a multinational manufacturer in this sector, forecasting plays a critical role, as it is the basis for budget distribution across the various departments. Previous forecasting methods relied on manual calculations and the use of Excel-based solutions, which often only work with simple averages. This high level of manual and personnel effort not only limited the accuracy of the forecasts, but also their timeliness and frequency. The forecasting methods were also vulnerable to unpredictable market changes, which often led to delays in the supply chain. The introduction of an AI-based forecasting tool marked a turning point for the manufacturer. This advanced tool not only uses internal historical data, but also integrates external influencing factors such as special calendar events, past and future expected inflation indices and building permits into its analyses. As a result of this comprehensive data integration, the accuracy of forecasts was significantly increased to 91.4%.The increased forecast accuracy led to numerous positive effects on operations. A more reliable forecast enabled a more efficient and targeted budget allocation, which made it possible to achieve significant cost savings. Improved predictability and speed of response to market changes also contributed to a reduction in delivery times. The implementation of AI technology thus strengthened operational safety and sustainably improved the company's competitiveness.By using innovative AI technologies in forecasting practice, the insulation material manufacturer was not only able to optimize its processes, but also make it more adaptive and resilient to market fluctuations. This case study impressively demonstrates how technological advances can be used specifically to solve specific industry-specific challenges in order to promote operational efficiency and economic stability.

UseCase: Aerospace supply chain planning

Use case

Aerospace supply chain planning

Aerospace, industrial, industry, supply chain, aerospace industry, supplier

Customers from various industrial sectors, including original equipment and the aftermarket, are facing similar challenges. A specific example of this is a supplier to leading aerospace companies. It must predict the developments of over 4,000 material types in various market segments. For one of its main end customers, the planning processes were previously carried out manually and exclusively using Excel. In the past, this method of planning led to inaccurate results, which in turn led to both inventory shortages and excessive inventories. To overcome these challenges, pacemaker.ai provides a solution that provides automated, regularly updated forecasts. These forecasts serve as a basis for replenishment planning and help to precisely define the quantities to be purchased at the level of individual products.The planning is based on a forecast period of 18 months, during which the delivered materials are carefully reviewed. An important feature of the pacemaker.ai solution is the implementation of a five-level grouping structure. Within this structure, Cluster A materials are given priority, with a total of 215 articles being prioritized based on ABC/XYZ analysis.The current accuracy of pacemaker.ai's predictions is over 80%. Continuously refining and adjusting these forecasts is a key part of pacemaker.ai's commitment. This shows the company's efforts to constantly optimize its customers' supply chains and maximize their efficiency through innovative approaches in data analysis and machine learning.The integration of advanced, data-driven forecasting tools such as those from pacemaker.ai can significantly help solve traditional supply chain planning problems. The use of automated systems not only improves the accuracy and efficiency of inventory management, but also prevents costly overstocks and shortages. This represents enormous added value for suppliers in highly dynamic industries such as aerospace.‍

UseCase: Revolutionizing sales forecasting in the filter industry with AI-based solutions

Use case

Revolutionizing sales forecasting in the filter industry with AI-based solutions

filter industry, oil filters, air filters, automotive industry, automotive, filter, filters, filter supplier, suppliers, supplier

A leading supplier in the automotive industry faced significant difficulties in predicting monthly sales of oil and air filters for the B2B market in Europe, Russia and the UK. The volatility of the “call-off” data for these products was exceptionally high and showed fluctuations of up to 80%. The previous forecasting methods were based primarily on manual calculations by a team of four employees. This approach often led to inaccuracies, particularly for products with low sales volumes, which in turn was offset by high inventories. These inventories represented a significant capital commitment of billions. With these challenges in mind, the company turned to pacemaker.ai, a specialist in AI-powered forecasting technologies. Pacemaker.ai developed an advanced machine learning system that was specifically configured for the supplier's needs. This system integrated not only historical sales data, but also industry-specific influencing factors such as motor vehicle registrations, pollen count data and air pollution indices into the analysis. The introduction of the automated demand forecasting solution fundamentally transformed the company's sales forecasting. The forecast accuracy was significantly increased, which led to a reduction in forecast error of an impressive 41%. This improvement extended across a portfolio of 2000 products. In addition, manual planning effort was significantly reduced, which enabled employees to focus on more strategic tasks.Automation and increased accuracy of sales forecasts enabled the company to manage its inventory more efficiently and free up capital that had previously been tied up in oversized inventory volumes. These resources can now be invested in innovative projects and the further development of the product range. The success of this project demonstrates the potential of AI-based technologies to transform and sustainably improve traditional business processes.

UseCase: Optimizing logistics planning through AI-driven forecasting technology

Use case

Optimizing logistics planning through AI-driven forecasting technology

logistics, warehouse, tire, tires, logistics planning, warehouse opeations, delivery

Every year, our customer is faced with the daunting task of managing logistics for the delivery of millions of tires. Efficient planning of personnel and other resources necessary for warehouse operation requires extremely precise forecasts of the expected output quantities of goods. The previous method, based on monthly forecasts from the client, required extensive manual entries in Excel spreadsheets. These were supplemented with our own assessments in order to create a useful planning basis. However, the high expenditure of time and the poor quality of forecasts led to customer dissatisfaction. To address these challenges, pacemaker.ai has developed a tailor-made solution that not only improves the accuracy of forecasts but also significantly simplifies the planning process. By implementing advanced forecasting methods that forecast daily and weekly output volumes for each coming month, the forecast error was reduced by an impressive 18%.Integration of relevant influencing factors‍The new forecasting method uses a variety of data sources, including historical sales data as well as information on holidays, holidays, weather conditions and seasonal fluctuations. These factors play a decisive role in predicting output quantities and contribute to further increasing accuracy.Automation and increased efficiency‍The daily and automatically updated forecasts are made available to the customer, which reduces manual effort to a minimum. This increase in efficiency enables customers to better plan resources and react more quickly to changes in demand.Future prospects and further plans‍By using this innovative technology, our customer was able to strengthen its position in the highly competitive logistics market. The successes of the new forecasting methods motivate further exploration of additional uses of AI in other areas of the company. Overall, this case clearly shows how the use of artificial intelligence and machine learning in logistics planning not only improves forecast accuracy, but can also significantly increase operational efficiency.‍

UseCase: Automobile manufacturer predicts sales of over 500,000 items

Use case

Automobile manufacturer predicts sales of over 500,000 items

automotive, automobile, automobile manufacturing, automotive industry, car, car industry

A leading German automotive manufacturer was confronted with fluctuating demand in its after-sales business and was increasingly dissatisfied with the previous approach to predicting these developments. In search of an improved solution, the company decided to implement pacemaker.ai, a provider of transparent forecasting technologies.The forecasting method used up to that point was developed internally and was based primarily on trend analyses. However, this method had recently lost accuracy. An additional problem was that the expertise required to carry out and adjust forecasts was largely concentrated with just one person in the company, increasing the risk of loss of knowledge and dependency.The transition to pacemaker.ai offered a solution that not only improved forecasting quality, but also more broadly distributed knowledge of predictive methods within the company and thus made it less susceptible to staffing bottlenecks. As a result of this strategic change, the automotive manufacturer was able to create a more robust and transparent planning basis, which ultimately led to more efficient management of the after-sales area. pacemaker.ai has developed a comprehensive forecasting system for a manufacturer that includes both long-term and short-term forecasts for around 500,000 SKUs. The long-term forecasts are designed to help the original equipment manufacturer (OEM) plan product life cycles. These forecasts cover a period of 15 years and are therefore particularly valuable for strategic decisions and long-term planning processes.In parallel, the short-term forecast provides the OEM with operational and medium-term planning support. These forecasts cover a period of two years and provide monthly forecasts that enable the company to respond flexibly to market demands and production conditions.It is noteworthy that all forecasts created by Pacemaker.ai have significantly exceeded the expected accuracy values. This underscores the effectiveness and reliability of the predictive methods and technologies used by Pacemaker.ai. By integrating these precise forecasting solutions, the OEM can not only optimally allocate its resources, but also strengthen its market position through efficient and targeted production planning.‍

UseCase: Optimizing inventory planning in the automotive supplier industry

Use case

Optimizing inventory planning in the automotive supplier industry

automotive supplier, automotive supplier industry, supplier, automobile supplier

The customer, who works as an original equipment manufacturer in the automotive industry, also offers automotive parts on the aftermarket. The planning challenges for this customer are complex. On the one hand, incomplete time series due to newly introduced products make forecast accuracy difficult. On the other hand, the highly volatile ordering behavior of OEMs (original equipment manufacturers) leads to further complications. These factors make reliable planning increasingly difficult.In the customer's previous approach, planning was carried out by regularly, manually importing data into a central Excel spreadsheet. However, this method proved to be time-consuming and inefficient. The forecasts created in Excel were often inaccurate and only available at a very rough level of aggregation. These inaccuracies in turn had negative effects on warehousing. There were often both excess inventory, which caused unnecessary costs, and out-of-stock situations, which led to supply bottlenecks and potentially lost sales.The need to optimize this planning process is obvious. A more efficient and accurate method could not only save time, but also improve the accuracy of forecasts and optimize inventory levels to minimize both overstocks and shortages.‍ pacemaker.ai has developed tailor-made forecasts for the customer, which meet the various requirements and range from model series to SKU (stock keeping unit) level. These forecasts are structured through various filter levels, which include plants, production lines and material types.pacemaker.ai's predictions are configured to be made on a monthly basis. The accuracy of these forecasts varies depending on the level of aggregation, with the prediction accuracy exceeding 85% in some cases and as much as 95% in others. This high level of precision in forecasts enables customers to make more efficient and precise planning and decisions in the production process.

UseCase: Optimizing supply chain management through precise forecasting models in the textile industry

Use case

Optimizing supply chain management through precise forecasting models in the textile industry

textile, textile industry, fashion, retail sector, retail logistics, logistics services, textile logistics

A well-known logistics service provider, which works exclusively for a leading fashion company in the textile retail sector, is facing significant challenges. The company employs around 1000 people who service eight distribution centers in Germany and Austria. The main problem currently lies in the highly fluctuating incoming goods caused by suppliers. These irregularities lead to inaccuracies in forecasting and significantly impair predictability. In particular, the lack of delivery reliability on the part of suppliers makes efficient process planning in the logistics center difficult. In order to improve the reliability of forecasts and enable more effective planning, a detailed evaluation of suppliers was first carried out with regard to their delivery reliability. This made it possible to model expected schedule accuracy and corresponding delivery time windows specifically for each supplier. In addition, additional variables such as vacation periods, public holidays and inventory periods were included in the models. By integrating these factors into an advanced machine learning model, the customer was not only able to increase predictive accuracy, but also optimize personnel planning and the use of warehouse capacities. The model also supports smarter management of supplier relationships by allowing early adjustments in delivery plans to prevent bottlenecks and increase efficiency. The introduction of this technology has enabled the logistics company to make its operations much more agile and responsive. With improved forecast accuracy and optimized resource allocation, the company is now able to react more flexibly to market changes and increase customer satisfaction through timely deliveries. In light of these successes, the company plans to expand the application of machine learning models to other areas of its supply chain in order to effectively master future challenges.

UseCase: Intelligent pump monitoring using artificial intelligence

Use case

Intelligent pump monitoring using artificial intelligence

automotive supplier, paper, aerospace, food, beverage

The supply pump is one of the central components of many plants. It ensures fluid circulation through the entire system. Damage to this pump will result in the failure of the entire plant – this must be avoided at all costs. In this specific case, the pump is operated at various speeds, which makes static monitoring more difficult. Artificial intelligence can be used in a targeted manner here: AI simplifies pump monitoring while increasing the efficiency of the entire process. Process deviations (anomalies) are detected early and downtime is minimised.

UseCase: Get Started With CurateIt

Use case

Get Started With CurateIt

Software industries, Marketing agencies, Internet marketing

Spoken like ‘Curate it’ is derived from the word curation meaning to filter or organize things. Another aspect of it also from root of the word curious. We believe all of us are multi-faceted beings with different interests & passions and Curateit is a platform for those crazy ones. It's a place where users can share all aspects, whether you’re a creative, artist, influencer or entrepreneur, a student or a teacher, a hobbyist or a professional.

Information about Artificial Intelligence in India

When exploring the Artificial Intelligence industry in India, several key factors emerge as crucial for informed decision-making. The regulatory landscape plays a significant role, with the Indian government actively promoting AI through initiatives like the National Strategy for Artificial Intelligence, which aims to foster innovation while ensuring ethical use. The challenges faced include data privacy concerns, infrastructure limitations, and a talent shortage in specialized AI fields. However, the opportunities are vast, particularly due to the country’s large pool of tech-savvy professionals and growing investment from both domestic and international firms. The competitive landscape is dynamic, with numerous startups and established companies vying for market share across various sectors, including healthcare, finance, and agriculture. Furthermore, India's position as a global player in the AI market is reinforced by partnerships with international organizations and the increasing demand for AI solutions worldwide. Environmental concerns are also becoming more prominent, as the industry seeks sustainable practices in AI development. Overall, understanding these dimensions can provide valuable insights for anyone interested in pursuing opportunities within India's vibrant AI ecosystem.


Insights about the Artificial Intelligence results above

Some interesting numbers and facts about your company results for Artificial Intelligence

Country with most fitting companiesIndia
Amount of fitting manufacturers1020
Amount of suitable service providers895
Average amount of employees11-50
Oldest suiting company2010
Youngest suiting company2021

Frequently asked questions (FAQ) about Artificial Intelligence Companies

Some interesting questions that has been asked about the results you have just received for Artificial Intelligence

Based on our calculations related technologies to Artificial Intelligence are Big Data, E-Health, Retail Tech, Artificial Intelligence & Machine Learning, E-Commerce

Start-Ups who are working in Artificial Intelligence are Vectority Solutions, AIW - Artificially Intelligent Workforce

The most represented industries which are working in Artificial Intelligence are IT, Software and Services, Other, Education, Automation, Research

ensun uses an advanced search and ranking system capable of sifting through millions of companies and hundreds of millions of products and services to identify suitable matches. This is achieved by leveraging cutting-edge technologies, including Artificial Intelligence.

Artificial Intelligence results by various countries

Related categories of Artificial Intelligence